S cience	T echnology	Engineering	Art	Math
The study of the world around us	A set of tools, both modern and	Creating things that work, or	Expressing imagination and	The practice of using patterns and
through observation and	traditional, that help us achieve	making them work better, to solve	skill through creative	abstract symbols to form logical
experiment	our goals	problems in the real world	design	arguments and predictions
Science is the study of the	Technology, while not a	Engineering is both a body of	Art is a discipline that can	Mathematics is the study of
natural world, including the laws	discipline in the strictest sense,	knowledge—about the design and	be mastered—for example,	patterns and relationships among
of nature associated with	comprises the entire system of	creation of human-made	one can become a	quantities, numbers, and space.
physics, chemistry, and biology	people and organizations,	products—and a process for	specialist in digital media.	Unlike in science, where empirical
and the treatment or application	knowledge, processes, and	solving problems. This process is	Art is also a method that	evidence is sought to warrant or
of facts, principles, concepts,	devices that go into creating and	design under constraint. One	connects science,	overthrow claims, claims in
and conventions associated with	operating technological artifacts,	constraint in engineering design is	technology, engineering,	mathematics are warranted
these disciplines. Science is both	as well as the artifacts	the laws of nature, or science.	and math through the open	through logical arguments based
a body of knowledge that has	themselves. Throughout history,	Other constraints include time,	communication of history	on foundational assumptions. The
been accumulated over time and	humans have created technology	money, available materials,	and social understanding.	logical arguments themselves are
a process—scientific inquiry—	to satisfy their wants and needs.	ergonomics, environmental	Projects that incorporate	part of mathematics along with
that generates new knowledge.	Much of modern technology is a	regulations, manufacturability,	artistic elements will	the claims. As in science,
Knowledge from science informs	product of science and	and reparability. Engineering	appeal to a more diverse	knowledge in mathematics
the engineering design process.	engineering, and technological	utilizes concepts from science and	audience, adding meaning	continues to grow, but unlike in
	tools are used in both fields.	mathematics as well as	and relevancy to its design,	science, knowledge in
Scientifically literate students		technological tools.	implementation, and	mathematics is not overturned,
use scientific knowledge not	Technologically literate students		review.	unless the foundational
only in physics, chemistry,	understand that technology is	Students who are literate in		assumptions are transformed.
biological sciences, and	the innovation with or	engineering understand how past,	Artistic components of	Specific conceptual categories of
earth/space sciences to	manipulation of our natural	present, and future technologies	design allows for the free	K-12 mathematics include
understand the natural world,	resources to help create and	are developed through the	expression of imagination	numbers and arithmetic, algebra,
but they also understand the	satisfy human needs and also to	engineering design process to	and functional skill in a	functions, geometry, and statistics
scientific need for existing and	learn how to obtain, utilize, and	solve problems. They also see	given craft. Students who	and probability. Mathematics is
new technologies, how new	manage technological tools to	how science and mathematics are	are literate in the arts have	used in science, engineering and
advances in scientific	solve science, mathematics, and	used in the creation of these	an appreciation of	technology.
understanding can be	engineering problems.	technologies.	technological contexts, as	
engineered, and how			well as the ability to	Mathematically literate students
mathematics is used to			reframe the application of	not only know how to analyze,
articulate and solve problems.			scientific principles to	reason, and communicate ideas
			engineering realities.	effectively; they can also
				mathematically pose, model,
				formulate, solve, and interpret
				questions and solutions in
				science, technology, and
				engineering.

STEM definitions provided by <u>Californians Dedicated to Education Foundation</u>